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Physico-chemical models of selection processe'> on biomacromolecules - replicators are in­
vestigated. Three special cases are considered: J) Replicators are selfreproduced with mutations, 
2) selection process involving two or more substrates, and 3) selection process is controlled by 
external positive inflows of replicators. Simple tools of qualitative theory of differential equations 
are used, in particular the so-called linearization method based on the eigenvalues of Jacobi 
matrix evaluated at the given stationary state. 

A mathematical modelling of selection processes on molecular level was initiated by Eigen1 - 2 

(cf. also refs3 -4) at the beginning of seventies. He introduced the notion information carrier, 
which corresponds to a biomacromolecular system capable to reproduce itself. This conceptual 
notion in the forthcoming part of present communication will be called the replicator5 . Eigen 
has described the process of self-reproduction of replicators by phenomenological differential 
equations with two types of external constraints which would make the reaction system more 
competitive. The first type of these constraints is called the constant poplllation, it requires that 
the sum of concentrations of replicators is kept fixed during the whole time evolution of the 
kinetic system. The second type, called the constant fluxes, requires that an inflow of energy 
rich molecules (called the substrate) in the reaction system is time-invariant. Both these types 
of external constraints induce a selective pressure among replicators which gives to rise to typical 
Darwinian selection known up to that time only for living systems. Eigen has used this pheno­
menological model as a conceptual tool to abridge a deep gap between information contents 
of non-instructed synthesis of chemical macromolecules (chemical evolution) and instructed 
synthesis of biological macromolecules (a very beginning of biological evolution). In the litera­
ture6 - 8 was mainly studied the selection model involving the constant-population constraint 
while its counterparts based on the constant-fluxes constraints were considered only marginally1 ,8 

as a possible and alternative explanation of selection processes on molecular level. This was 
caused mainly due to mathematical difficulties in the stability analysis of its stationary states. 
Ebeling et al.9 -10 have shown that the mentioned formal "drawback" of constant-fluxes ap­
proach can be simply surmounted by making use of the standard technique of qualitative theory 
of differential equations11 , in particular by the so-called linearization method based on the negati­
veness of real parts of eigenvalues of the Jacobi matrix evaluated at the given stationary state. 
Moreover, the constant-fluxes approach has very easy and simple physico-chemical interpreta­
tion, it can be naturally related to known kinetic and ecological models that are forming the main 
field of interest for up-to-date formal chemical kineticsl2 . Recently, we have enlarged13 the 
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Ebeling's theory by taking into account very important possibility that not only replicators but 
also the substrate are spontaneously decaying. Such an additional requirement removes a "cata­
strophic" state, overlooked in the Ebeling's approach, in which all replicators are becoming 
extinct and the substrate concentration is linearly increasing to infinity as t ~ IX'. We have 
demonstrated that this unjustly omitted theory represents a very fruitful theoretical possibility 
how to explain the selection processes on molecular level. Its theoretical tools are very flexible 
for futher generalization and modification, i.e. it permits to develop very deep and exhaustive 
particular theoretical studies of the selection processes. 

The purpose of this communication is to develop the Ebeling's approach toward 
the following three particular cases: 1) The replicator system with erroneous self­
reproductions (mutations); 2) the selection process involving two or more substrates; 
3) the selection process controlled by external constant and non-negative replicator 
inflows to reaction system. In all these particulat selection models we have introduced 
the above mentioned possibility of the substrate decay. 

THEORETICAL 

Section Model with Mutations 

We are given a set composed of II replicators (biomacromolecules) Xl' X2 •.•.• XII 
and a substrate Xo• confined to a well stirred reactor. which are capable of replication. 
It is assumed that each replicator Xi is self-reproduced (replicated) correctly (on 
itself) or incorrectly (on another replicator) with a participation of the substrate Xo 
and that the reactor walls are permeable to energy rich compounds (corresponding 
to the substrate Xo with constant inflow) and energy deficient compounds (which are 
allowed to flow out from the reactor). These assumptions are formally represented 
by the following system of chemical reactions 

Rl : 
i(JO 

D--Xo, (A) 

R2 : 
X xoo/lo 0 
0- • (B) 

Aij: X X QijXOXi X o + i -------->- i + Xj • (C) 

Bi : X·~D , . (D) 

for i,j = 1,2, ... , n. The square symbol12 0 on the r.h.s. of (B) and (D) represents 
those compounds - reaction products ("garbage") that are irrelevant for the kinetics 
of studied system. The same symbol was also used on the I.h.s. of (A), here it means 
a blank side of chemical reaction. Each arrow (reaction) in (A)-(D) is evaluated 
by the corresponding rate function. The entries xo. Xl' X2 • ... , Xn are the concentra-
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tions of Xo, Xl' Xl, , .. , Xn' respectively. The reaction R I , see (A),is a constant inflow 
of the substrate Xo.The reaction Aij, see (C), for fixed indiCes 1 ~ i, j ~ n, represents 
a replication processor a replicator Xi> this replica-tion is called correct if i ,;, j 
(i.e. the r~p1icator "X,is reduplicated on itself) or incorrect" (then it is called th~ 
mutuation) if i * j (i.e~-"the replicator Xi is reduplicated on itself and another repli­
cator Xj)' The secofld reaction R 2 , see (B), and the last reactions BI , B2 , ••• , Bn, 

see ( D), correspond to a decomposition of the substrate and replicators, respectively, 
to products that are not appearing on the l.h.s. of reactions (A) and (C), Here is 
naturally to assume that the above mentioned incorrect reduplications - mutations 
are very rare, or in other words, the non-diagonal rate constants are smaller about 
few orders than their diagonal counterparts. This means that the rate-constant matrix 
A = (aij) is c1assified14 as a non-negative matrix with dominant diagonal elements 
(the fact of which will be very important in our forthcoming considerations). In 
order to keep our theory simplest as possible we shall require that all decomposition 
rate constants b;'s are the same, 

(1) 

From the standpoint of chemisty this constraint is quite plausible since the decom­
position of replicators is much more substantially determined by the physico­
chemical parameters of the medium in which the replicators are reduplicating than 
their actual chemical primary structure. 

The system (A)-(D) of chemical reactions can be diagrammatically represented 
by the so-called reaction graph 1S (see Fig. 2 in refP). Following very fruitful idea 
of VolpertlS •16 , the dynamics of considered chemical reactions is described by the 
following system of differential equations determined over the reaction graph 

n 

Xo = CPo - xo( L aijxj + 1/10)' 
i.j=l 

n 

Xi = Xo L aijXj - fJXi (i = 1,2, ... , n). 
j=1 

(2a) 

(2b) 

These differential equations correspond to the fact that the kinetics of (A)-(D) 
is governed by the mass-action law. We have to emphasize, the present model is 
a generalization of the original Ebeling's approach, we have introduced important 
assumption that the substrate Xo is monomolecularly decaying, see (B). It removes 
a "catastrophic" possiblity in which all replicators Xl' X2 , ... , Xn are becoming 
extinct whereas the substrate concentration is linearly increasing to infinity as t -+ 00. 

If the initial concentrations (at t = 0) are positive, then for each t ~ 0 the substrate 
concentration is positive and replicator concentration are non-negative, ~nd all 
bounded from above, 
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o <x,,(t) < 00, . 

. 0 ·~Xi(t)' < 00 • 

The matrix form of Eq. (2) is 

Xo = <Po --.' xo(eT Ax + l/Io) , 

i = (xoA - PE) x , 

(3a) 

(3b) 

(4a) 

(4b) 

where A = (aij) is a square matrix with entries corresponding to rate constants ajj. 
The symbol E is the unit matrix, e = (t, 1, ... , 1)'I' and x ~ (XI' x 2 , ••• , x,y are 
column vectors. 

The eigenproblem of A.is 

AC j = A.iCi, (i = 1,2, ... , n) (5) 

where Ai and Cj are the eigenvalue and the corresponding eigenvector, respectively. 
Since the matrix A has dominant diagonal, its eigenvalues are roughly equal to the 
diagonal elements, A. i == aij; the fact of which implies that all eigenvalues are non­
degenrate, i.e. none two of them are equal. The matrix U = (cI , C2, ••• ,cII) composed 
of eigenvectors of A is non-singular (since the eigenvectors are linearly itidependent 
due to the fact that all eigenvalues are different) and diagonalizes the matrix A, 

(6) 

According to Perron-Frobenius theorem '4 the eigenvector assigned to the most 
positive eigenvalue is non-negative, i.e. all its entries are non-negative. 

Employing the matrix U the differential equations (4a, b) can be rewritten in the 
so-called canonical form 

10 = <Po - to(eT UAt + l/Io) , 

i = (t, A - PE) t , 

(7a) 

(7b) 

where to =:= Xo and t = U-IX are new canonical dynamical variables. Their impor­
tance consists in a formal similarity with the differential equations of the standard 
Ebeling's modello• 

Alternative (or second) canonical form of (4a, b) is (cf. ref. 13) 

Yo = - Y~(<PoYo - eT UAy - l/Io), 

y = (A - PYoE) y , 

(8a) 

t8b) 

where Yo = lIto, y = t = U-IX. This canonical form will be useful to derive the 
sufficient conditions for a stationary state to be asymptotically stable. 
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The stationary states of(7a, b) are of the following two kinds: 

1st kind. The stationary concentration 10 is positi~e whereas the stationary con­
centration vector i is vanishing, 

10 = lPo 
1/10 ' 

i = O. 

This stationary state will be denoted by So. 

(9a) 

(9b) 

2nd kind. The stationary concentration 10 is positive whereas the stationary vector t 
has all entries vanishing except of a preselected p-th positive entry, 

(lOa) 

(lOb) 

where the positive constant (X is determined from the stationarity of (7a), i.e. lPo = 
= 10(~T UAt + 1/10)' we get 

(11) 

Its positiveness implies 

(12) 

where we have assumed that cp is a non-negative vector, eTcp > O. This stationary 
state will be denoted by S po 

The Jacobi matrixll of{7a, b) is 

J= 0(10' i) = (-eTUAt - 1/10 -toeTUA). 
aCto, t) At toA - PE 

Its specification for the stationary states So and Sp are 

(
-1/10 - ::.eTUA ) 

J(So) = , 

o lPo A - PE 
1/10 

(13) 

(14a) 
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- leTUIi ) Ap 

Ii Ii - (JE 
Ap 

(14b) 

The eigenvalues pf I(So) are equal to its diagonal entries (it is a triangular matrix) 

(0) _ qJo 1 {J (. - I 2 ) J.li - - Ai - , ,- , "I"", n • 
1/10 

(15a) 

(15b) 

The eigenvalue J.l~0) is automatically negative (the substrate decay rate constant 1/10 

is positive), other eigenvalues Jl~O), ... , Jl~O) are negative if 

(J 1/10 > Ap = max Ai . (16) 
qJo I ;:p;!in 

Hence, the stationary state So is asymptotically stable if the above condition (16) 
is fulfilled. 

The eigenvalues of I(S,) are determined by the secular equation I/(Sp) - JlEI = 0, 

The second term on the Lh.s. of (17) determines (n - 1) eigenvalues of I(Sp), 

J.l~p) = '-Ai - {J, (i = 1, ... ,p - l,p + 1, ... ,11) 
Ap 

(18) 

The remaining two eigenvalues J.l<t) and J.l<t) are determined by the quadratic equation 
(the first term on l.h.s. of(17). Its roots (eigenvalues) have negative real parts if and 
only if the coefficients of the quadratic equation are positive, 

The eigenvalues (18) are negative if 

Ap = max Ai . 
1 ;!i i;;;; n 
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All eigenvalues of J(Sp) have. ne~tive real parts if the conditions (19) and (20) are 
simultaneously satisfied 

: '., 

(21) 

:rhiSll1ean.s . t4at amoDgstati9narY"states So, Sl,t . .... $,. jsa~ymptoti~Uy. stable 
~ither So. if the condition (16) is satisfied, or a state Sp (1 ~ P ~ n), if the condition 
(2/) is satisfied; therefore the only sta.tionary state is asymptotically stable due to 
the fact that Eqs (16) and (21) are mutually excluding. The concentrations of winning 
stationary state are determined by Eqs (lOa, b) 

(22a) 

(22b) 

where the positive constant 0: is given by Eq. (11). An existence of the non-negative 
eigenvector c p assigned to the most positive eigenvalue Ap is ensured by already 
mentioned Perron-Frobenius theorem, 

The above results ·represents only necessary conditions for a stationary state to be 
asymptotically stable. Now we demonstrate that the conditions (16) and (21) are 
also sufficient. The equations (8a, b) give . 

where 

- - =:= qJoYo - :LAiYi -1/10, d (1) " 
dt Yo . i= 1 

n 

Ai = Ai L Uji = AieTc;, (i = 1,2, ,." n) 
j=l 

Time average concentrations are defined by 

ZI(t) = ! f'y;(-r) d-r, (i = 0, t, .. " n) 
to· 

(23a) 

(23b) 

(23c) 

(24) 

Let us integrate differential equations (23a, b) from -r = 0 to -r = t, after dividing 
by t, we have 

1 ( 1 1 ) n - -(- - -(- = qJo zo(t) - L AI z/(t) - 1/10, 
t Yo t) Yo 0) i= 1 

(25a) 
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In YI(t) - In YI(O) _ , ( ) P 
--''--'-'-L-_--=-~ _ 11.1 - Zo t , 

t 
(i = 1,2, .•. , n) (25b) 

We shall assume that the limit values ZI( (0) always exist and they are non-negative 
and bounded from above. Let us assume that the concentration Yp = tp does not 
vanish as t .... 00, fro Eq. (25b) we get 

~~=~, ~ p 

this means that such an index p of non-decaying replicator is unambiguously de­
termined. If we have two such indices p and q, then Ap = Aq, the condition of which 
is physically highly unprobable (it implies that the replicators Xp and Xq are kinetically 
equivalent). For other indices i = 1, "', p - 1, P + 1, ... , n the replicator con­
centrations vanish as t .... 00; limit values of their time averages are vanishing as 
t .... 00. Since the variable Yo(t) is positive and bounded from above. the relation 
(25a) provides as t .... 00, 

(27) 

The limit values of time averages tend to their stationary values t .... 00, 

lim ZI(t) = Yi' (i = 0,1, . ", n) (28) 
t .... oo 

The relation (25b) can be simply rewritten in the following form 

(29) 

We shall study asymptotical properties of this solution. For each index i = 1 2 '" 
... , p - 1, p + 1, ... , n the concentration vanishes as t .... 00, this implies that the 
asymptotical value of exponent in Eq. (29) should be negative, Ai - zoe (0) p < 0, 
or by making use of the relation (26) we get Ai < Ap , which is simultaneously with 
the positiveness of Eq. (27) (cf. Eq. (19») equivalent with the condition (21) for 
asymptotical stability of Sp-

Summarizing the above results, for a replicator system determined by Eq. (2a, b) 
there exist two mutually excluding alternative possibilities. First, all replicators are 
becoming extinct (this possibility is determined by Eq. (16». Second, there exists 
a molecular selection process which always leads to an unambiguous selection 
"decision" - to survival of the "best-fitted" quasi-replicator. Under the term quasi­
replicator we mean such a set of replica tors Xl' X2 , ••• , Xn in which the replicator Xp 
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is dominant and other ones are appearing in much smaller amount l • In biology 
this phenomenon corresponds to the notion wi ld species; a class of individuals which 
have fixed phenotypic properties in common, but the individual members of the 
species are slightly genotypically different. An optimally addapted phenotype is 
composed of individuals with scattered genotype narrowly around a defined avared 
sequence of nucleotide bases in DNA. 

Selection Model with TWo or More Substrates 

In the previous section we have assumed that the studied selection proeess is realized 
for systems composed of only one substrate Xo. Now we remove lO this constraint 
and let us consider a system composed of n replicators Xl' X2 , ••• , XII and m dif­
ferent substrates Y to Y2 , ••• , Ym• The pattern of chemical reactions (A) and (B) is 
enlarged as follows 

R j : 
'PJ 

D-Yj' (E) 

R" j' Y tim 0 j- , (F) 

Aij: Y X "liYl''' I j+ i- Xi + Xi' (G) 

B1: 
X b,xl 0 
1- , (H) 

for i = 1, 2, ... , nand j = 1, 2, ... , m. The third reaction (G) represents a replication 
of Xi with the participation of the substrate Y j ; the rate constant of this replication 
is ail' The assigned set of differential equations is 

m 

Its matrix form is 

n 

(i = 1,2, ••. ,n) 

y = If' - dg ('" + AT x) Y , 

i = dg (Ay - b) x , 

(30a) 

(30b) 

(3la) 

(3ib) 

where A = (aij) is a matrix of rate constants from reaction (G). If' = (If'l' CP2' ... , CPmY 
and", = (t{ll' 1/12, ... , t{lmY are column vectors of substrate inflows and substrate 
decaying rate constants, respectively. If the initial concentrations (at t = 0) of sub­
strates and replicators are positive, then for each t ?; 0 the substrate concentration 
vector y = yet) = (YI' Y2' ... , YmY is positive and replicator concentration vector 
x = x(t) = (Xl' X 2 , ... , xnY is non-negative, and both are bounded from above, 
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o < yit) < 00, (j = 1,2, ... , m) 

o ~ XI(t) < 00, (i = 1,2, ... , n) . 

3229 

(32a) 

(32b) 

Let I be a subset of the integer set N = {1, 2, ... , n}, we define with respect to this 
subset I a stationary state S/ as follows: All stationary substrate concentrations are 
positive (cf. Eq. (32a» 

YJ > 0, (j = 1,2, ... , m) (33a) 

and the stationary replicator concentrations are 

i EI = Xi> 0, (33b) 

iEI' =Xi = 0, 

where l' = N / I is composed of those integers of N that are not contained at I, 
i.e. N = I u l' and I n I' ... 0. The positive entries of x are collected at the column 
vector x(I) , its dimension is the same as the cardinality s = III of the subset I. 
Similarly, if we omit in the matrix A the rows with indices not belonging to I, we get 
a submatrix A(I), this submatrix contains m columns and s = III rows. The stationary 
states should be separately treated for I = 0 (empty set, this stationary state is 
denoted by S/iJ) and for all other non-empty subsets I c: N. 

Stationary state S/iJ' The stationary concentration vectors are determined by 

x = 0, 

i.e. all replicator concentrations are vanishing. 

(34a) 

(34 b) 

Stationary state S/. The set I is a non-empty subset of N = {t, 2, ... , n}, the 
stationary concentration vectors are determined by the following coupled matrix 
equations 

AT(I) x(1) = dg- 1(y) qJ - '" , 

A(l) Y = bel) . 

(35a) 

(35 b) 

We say that the stationary state S1 was properly selected if the above system has 
positive solution for x(1) and y, in the opposite case we say that it does not exist 
and will be rejected from our forthcoming considerations. 

A~,sllming that we know the stationary substrate concentration vector y, then the 
stationary replicator concentration vector x(1) is determined by the linear problem 
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{35a). It has a solution14 if and only if matrices AT(I) and (AT(I), dg- 1(y) tp - t/I) 
are of the same rank, i.e. r[ AT(I)] = r[(AT(I), dg- 1(y) tp - t/I)]. This requirement 
can be fulfilled, in general, only for III = s ~ m, i.e. for system with two or more 
substrates the maximal number of surviving replicators is equal to the number of 
substrates. 

After this specification of stationary states we shall turn our attention to the con­
struction of Jacobi matrices evaluated at these states. The Jacobi matrix of Eqs 
(30a, b) is 

J= aev, i) = (-dg(ATX + t/I) -dg(y) AT ) 
a(y, x) dg(x) A dg(Ay - b) . 

(36) 

Its value at the stationary state So is 

J(So) = (-dog(t/I) -dg(y) AT ) 
dg(Ay - b) , (37) 

where the stationary substrate concentration vector y is specified by Eq. (34a). 
Its eigenvalues are negative if 

Ay < h, (38a) 

where 

(38a) 

Hence, the stationary state So is asymptotically stable if the condition (38) is satisfied 

The Jacobi matrix (36) specified for Sf, where I =l= 0, is of the following block 
structure 

where 

( _dg-1(y) dg( tp) -dg(y) AT(I)) 
B = dg(x(I») A(I) 0 ' 

G = -dg(y) AT(I') , 

D = dg(A(!,) Y - b(!,)). 

(39a) 

(39b) 

(39c) 

(39d) 

The eigenvalues of J(SI) are determined as the eigenvalues of either B or diagonal 
matrix D. The eigenvalues originated by the diagonal matrix D are negative if 

A(!,) Y < h. (40) 
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The sign-problem of the eigenvalues originated by B will be treated as follows. Its 
eigenvalue problem looks like this 

(41) 

where Z1 and Z2 are "subvectors" of an eigenvector of B asigned to the eigenvalue A. 
Introducing Eq. (39b) into Eq. (40) we arrive at two coupled equations 

_dg- 1(y) dg(lp) Zl - dg(y) AT(l) Z2 = AZ1 , 

dg(x(l)) A(l) Zl = AZ2 • 

(420) 

(42b) 

Solving the first equation (42a) for the "subvector" Zl and substituting this result 
in Eq. (42b) we get 

dg(x(l)) A(l) [A + dg-1(y) dg( lp)] -1 dg(y) AT(l) Z2 = ~ AZ2 • (43) 

The obtained pseudoeigenvalue problem can be rewritten in 

(44a) 

where 

t2 = dg- 1 ,2(x(1)) Z2' (44b) 

C(l, A) = dg(y) [A dg(y) + dg(lp)] -1 AT(l) dg1 ,2(x(1)) . (44c) 

Assuming that r[ A(l)] = s (i.e. the rows of A(l) are linearly independent), then the 
matrix CT(A, 1) C(A, 1) is manifestly positive definite, its eigenvalues should be 
positive, - A > 0, or 

A < O. (45) 

We have proved that the remaining eigenvalues of I(SI)' corresponding to the sub­
matrix B, are negative. It means that the stationary state S 1 is asymptotically stable 
if the stationary substrate concentration vector y simultaneously satisfies the following 
two conditions 

A(l) Y = b(l), 

A(l') Y < b(l') . 

Hence the vector ji should be taken from a convex set 

(46a) 

(46b) 

Jt'"(l) = {y E R'.';; A(l) Y = b(l) and A(l') ji < b(l')} , (47) 
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where R~ is the positive orthant of the vector space composed of m-dimensional 
column vectors. 

Let us come back to Eqs (35a, b), they determine stationary vectors ji and xCI) 
assigned to the state S/. After simple algebra we rewrite these formulae in a form 
explicitly determinig the vectors ji and xCI), 

A(I)dg- 1[AT(I)x(I) + I/IJ (,0 = b(I) , 

ji = dg- 1 [AT(I)x(I) + I/IJ (,0. 

(48a) 

(48b) 

The non-linear expression (48a) determines the stationary replicator concentration 
vector xCI), the necessary condition that the solution x(I) exists is 

{49) 

This relation is in a contradiction with the necessary conditions (38a, b) for the 
stationary state So to be asymptotically stable, 

(50) 

Among stationary states S0 and S/s (for III ~ 1) is asymptotically stable either S", 
or a stationary state S 1 with II I ~ 1. 

Let us assume that for a preselected index subset I the stationary state SI is 
asymptotically stable, then from Eqs (48a, b) and (46b) we get 

A(I) dg- 1 [AT(I) xCI) +1/1 J (,0 = b(I), 

A(!,) dg- 1[AT(I) x(I) +I'I/IJ (,0 < be!'). 

(51a) 

(51 b) 

The stationary concentratian vector x(I) of Sf must simultaneously satisfy both 
relations (51a,b). We form new index subset J =Iu{p}, where p¢:I and pE 

E {t, 2, ... , n}, i.e. we have added to I and index p. In order to be the new formed 
state SJ asymptotically stable, the corresponding stationary concentration vector 
x(J) must satisfy an analogue of Eqs (51a, b) 

A(J) dg-1[AT(J) x(J) + I/IJ (,0 = b(J) , 

A( J') dg - 1 [ AT( J) x( J) + 1/1 J (,0 < b( J') , 

(52a) 

(52b) 

where J' = N / J. But, if we remmember, the index p was initially belonging to!', 
there is impossible that the above relations (52a, b) will be simultaneously satisfied, 
the state SJ either does not exist (the relation (52a) has not a solution x(J))or it is 
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unstable (the relation (52b) is not fulfilled). This means that two stationary states Sf 
and SJ, where 1 c J, could not be simultaneously asymptotically stable. The sta­
tionary states SI and SJ may be simultaneously asymptotically stable only if their 
index subsets 1 and J are disjoint, i.e. 1 n J = 0. The positive orthant of phase 
space is divided in two nonoverlapping domains of their attractivity. If the initial 
state is belonging to one of those domains, then all the trajectory will be situated 
at the given domain, i.e. its attractor - stationary state will win as t -+ 00. 

Selection Model with External Inflows of Replicators 

Recently, Krempasky and Kveton17 have studied the interesting possibility how to 
obtain new qualitative features of the present model of selection when they introduced 
external inflows of replicators. We shall repeat their theoretical considerations in 
more general form, in particular the decay of substrate will be taken into account. 

The pattern of chemical reactions of the present model looks like this 

'1'0 
R 1: 0--+ Xo , (I) 

R2: X %01/10 0 
0---- , (J) 

R' · I· 
'1', X 0-- i. (K) 

Ai: 
D',XOX, 

Xo + Xi--Xi + X" (L) 

BI : 
X b,%. 0 1--+ , (M) 

for i = 1,2, ... , n. The third type of reactions (K) represents the above mentioned 
external inflows of replicators. 

The corresponding system of differential equations is 

n 

Xo = q>o - xo(l/Io + L a,xi) , 
i=) 

XI = q>1 +~xl(alxo - b,), (i = 1,2, ... , n). 

Its matrix form can be written as follows 

Xo = q>o - xo(l/Io + aTx). 

:i '= tp + dg(xoa - b) x, 

(53a) 

(53b) 

(54a) 

(54b) 

where q> = (q>1' q>2' ... , q>nY is a column vector of replicator inflows, we shall 
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postulate that this vector is non-negative, i.e. none its entry is negative. Let J be an 
index subset of N = {1, 2, ... , n}, its elements determine the positive entries of the 
vector f/', 

i E J => qJj > 0, 

i E J' => qJl = 0, 

(55a) 

(55b) 

where J' = N / J. If the initial concentrations of substrate as well as replicators 
are positive, then for each t ~ 0 these concentrations are bounded from above and 

0< xo(t) < 00 

o < xt(t) < 00, (i E J) 

o ~ Xj(t) < 00, (i E J') 

(56a) 

(56b) 

(56c) 

The stationary states of the system (53a, b) should be separately considered for two 
different possibilities in choising the index subset I. First, let us assume 

1= J, (57) 

i.e. the posItive stationary replicator concentrations Xj are those ones that have 
positive replicator inflows qJl' 

(i E J) (58a) 

Xj = 0, (i E J') (58b) 

The stationary replicator concentration XI' for i E J, is positive, this is ensured if 

b· 
Xo < min~. 

ifJ aj 
(59) 

The stationary substrate concentration Xo is determined by Eq. (53a), we get that 
it should be the smallest positive solution of the following non-linear equation 

- (." " qJl ) Xo '1'0 + ~ _ = qJo • 
ieJ btJaj - Xo 

(60) 

There is easy to see that it has the required solution Xo satisfying the constraint (59). 
This stationary state will be denoted by SJ. 
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Second, let 1 be an index subset obtained from the set when an additional index 
p E J' was added, 

1 = J u {p} . (61) 

Now, from Eq. (53b) specified for i = P we get immediately the stationary substrate 
concentration 

The stationary replicator concentrations Xj, for i =1= p, are (cf. Eq. (58 a)) 

(i E J) 

(i E 1') 

The stationary replicator concentration xp will be determined by Eq. (53a). 

(62) 

(63a) 

(63b) 

(64) 

The positiveness of Eqs (63a) and (64) is achieved if the following inequalitise are 
fulfilled 

Xo = bp/ap < min (bdai) , 

This stationary state will be denoted by SI' 

The Jacobi matrix of Eqs (53a, b) 

ieJ 

Its values for the stationary states SJ and S[ are 

C~'IX' 
-XOaj 

J(SJ) = a~j (jiiajxo - bi) 
0 

j=O j E J 
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~x.aj ) 

(jij(aiX~ - bi) 

j E J' 

(65a) 

(65 b) 

(66) 

iEO, 
i E J , (67) 
i E J' 
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C""IX' 
-xoap -XOaj -x,aJ ) i = 0 

J(S/) = ap:'p 0 0 

Ii,,(a, x~ - b,) 

i=p 
(68) 

ajXi 0 (jlj(ai Xo - bi) i e J 
0 0 0 i e l' 

j=O j=p peJ j el' 

The Jacobi matrix J(SJ) is of the triangle-block structure, therefore its eigenvalues 
are determined by the diagonal blocks. The right-down block (i, j e J') is diagonal 
matrix, therefore its diagonal entries should be negative, 

Xo < min (b;jai) . (69) 
ieJ' 

If we combine this inequality with Eq. (59) that ensures the positiveness of stationary 
replicator concentrations, we get 

Xo < min (bt!ai)' (70) 
ieN 

The left-up block (for i,j e J u {O}) fo J(SJ) has negative diagonal elements (cf. 
Eq. (59)). The eigenvalues of this block are determined as roots of the following 
non-linear equation 

(71) 

Here the I.h.s. has singular points at negative values A = alxo - bi' It is easy to 
show that its roots have always negative real parts, i.e. the eigenvalues of the left-up 
block of J(SJ) have the negative real parts. This implies, the stationary state SJ is 
asymptotically stable if the conditiin (69) is fulfilled. Since the stationary concentra­
tion Xo is determined as the solution of non-linear equation (60), the condition (70) 
is not very useful to resolve whether the stationary state SJ is asymptotically stable 
or not. Let p E J' be an index selected in such a way that 

bpJap = min (b;ja i). (72) 
IEJ' • 

Due to the inequality (70) we have also 

Xo < bpJap • (73) 

Since the I.h.s. Eq. (60) is monotonously increasing function of Xo taken from the 
interval 

o ~ Xo < min (b;jai) , (74) 
iEJ 
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then substituting Xo by the ratio bp/ap we get 

(75) 

The stationary state SJ is asymptotically stable if the substrate inflow CPo fulfils the 
above constraint, following Krempasky and Kveton17 it is called the subcritical 
regulation of replicator system. In this case all replicators with positive external 
inflows are surviving, all others are becoming extinct. 

The Jacobi matrix (68) has slightly more complicated block structure than (67). 
It has again block-triangle structure. The right-down block (for i, j E 1') is diagonal, 
therefore its diagonal entries should be negative, 

Xo < min (bi/ai). (76) 
IeI' 

Combining this result with Eq. (65a) we get 

Xo < bp/ap = min (b;jai) • (77) 
leN 

The eigenvalues of the left-up block (for i,j E J u {O, p}) are determined as roots of 

(78) 

where the entries aixO - hi are always negative for i E J, cf. Eq. (65a). After simple 
algebraic considerations one can show that its roots have negative real parts. This 
gives that the stationary state SI is asymptotically stable if the inequality (77) is 
satisfied. 

Summarizing the above results we arrive at the following simple scheme how to 
distinguish different possibilities in the selection model with external inflow of 
replicators. At the beginning we determine the so-called "best-fitted" replicator Xp 
by 

ap/bp = max (ai/bi). (79) 
iel 

If p E J (i.e. the "best-fitted" replicator has also positive inflow), then SJ is the only 
asymptotically stable stationary state. In the opposite case, if P E J', the asymptotical 
stability of SJ or SI (Where 1 = J u {p}) depends on the values of substrate inflow CPo. 
If we have the so-called subcritical regulation, 
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(80) 

then 8 J is asymptotically stable and 81 i sunstable. In the opposite case, if the inflow ({Jo 
satisfies the so-called supercritical regulation condition 

(81) 

then the state 81 is asymptotically stable and 8J is unstable. Hence, we have very 
simple "tools" how to control in some extent replicator system by properly selected 
external substrate and replicator inflows. 

CONCLUSION 

We have studied three special kinetic models of selection processes with"constant­
fluxes" constraints, originally postulated by Eigen 1 and elaborated in more deep form 
by Ebeling9 -1 o. The theory was modified 13 by taking into account the possibility 
of substrate decaying, it removes a "catastrophic" state in which all replicators are 
becoming extinct and substrate concentration is linearly increased to infinity as 
t ~ 00. The first model involves incorrect reduplications of replicators called 
mutations, it permits to formulate very important concept of the quasireplicator. 
The second model covers the possibility that the system contains two or more sub­
strates. These substrates are participating on the reduplication of replicators. We 
have shown that few replicators may survive while others are vanishing. The third 
model contains external constant and positiee replicator fluxes, then the system may 
be controlled by the fluxes. In our forthcoming communication we shall present an 
application of the theory to dynamical studies of greater kinetic patterns of repli­
cators - hypercycles. 
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